Clasificación de variedades de Coffea arabica en grano verde usando imágenes hiperespectrales y Machine Learning
Date
2024-11-05
Authors
Journal Title
Journal ISSN
Volume Title
Publisher
Universidad Nacional de Frontera
Abstract
La investigación tuvo por objetivo desarrollar un madelo de clasificación no destructiva de variedades de grano café verde con imágenes hiperespectrales y aprendizaje automático. Se analizaron muestras de los cultivares Arábica Típica, Pacamara, Maracaturra, Caturra y Bourbón. Se realizaron análisis de pH, color y humedad. Asimismo, se adquirieron imágenes hiperespectrales Vis-NIR (400-1000 nm) para obtención de perfiles espectrales. Estos, se exploraron con PCA. Además, se pretrataron con Savitzky-Golay, normalización y variable normal estándar. Se seleccionaron longitudes de onda con ReliefF. Se aplicaron tres modelos (LDA, SVM, KNN) a los datos espectrales completos y seleccionados con ReliefF. El pH, color y humedad no diferenciaron variedades. El PCA explico el 93% de la varianza total acumulada con los dos primeros componentes. LDA mostró el mejor desempeño con precisión de 0.96 y medida F de 0.97 utilizando el espectro-completo y sin prerpocesar, superando a SVM y KNN. Los resultados demuestran el alto potencial de las imágenes hiperespectrales y LDA para la clasificación rápida y no destructiva de café verde, con implicaciones positivas para el control de calidad y trazabilidad varietal.
Description
Keywords
Imágenes hiperespectrales, Aprendizaje automático, Café verde, Clasificación varietal